
DECREASE IN PHASE DENSITY IN VERY BRIGHT BEAMS 

A. L. Shabalin UDC 537.533.31 

The physical processes causing an increase in the virtual size of the emitter and a 
decrease in brightness in beams of charged particles from point sources (autoelectron emit- 
ters, electro-gas-dynamic (EGD) ion sources, and ion sources with field ionization) are con- 
sidered. The virtual size of the emitter increases because of mutual repulsion of randomly 
distributed beam particles. The results of the calculations agree well with the available 
experimental data. 

INTRODUCTION 

Quasi-point ion and electron sources with a high emission current density, in which 
charged particles are produced by processes in strong electric fields - electron field emis- 
sion, ion field evaporation, and field ionization - have undergone intensive improvement in 
recent years. These sources are distinguished by extremely high initial brightness 

B = joW/~ ~o ( l )  

(J0 is the emission current density, W is the particle energy, and To is the particle tem- 
perature at the emitter surface), which has the meaning of the current emitted from a unit 
area into a unit solid angle. 

We choose the axis along which the beam of charged particles propagates and construct 
a phase space of transverse coordinates and transverse momenta. In this four-dimensional 
space each particle will be depicted by a point, and the volume occupied by the cloud of 
such points is called the beam emittance, while the brightness B is proportional to the den- 
sity of points in the cloud. According to the Liouville theorem, in the absence cf time- 
dependent fields, the phase volume and brightness are the same in any beam cross section. 
Unfortunately, it turns out in practice that during the acceleration and transport of beams 
the phase volume, as a rule, undergoes a more or less pronounced increase, while the bright- 
ness decreases (exceptions are electron and positron beams in accumulators, which are strongly 
cooled by s~chrotron emission, which leads to an increase in their brightness, as follows 
from (i), as well as proton and antiproton beams with electronic and stochastic cooling [i, 
2]). Let us consider the possible causes of an increase in phase volume. In Fig. la we 
show a typical phase portrait of a beam from an ion source, and in Fig. ib a portrait of the 
same beam that has passed through an optical system with spherical aberration. Although the 
actual phase volume of the beam did not change in this case, its phase portrait became com- 
plicated and the effective phase volume occupied by the beam (shown by dashed lines) in- 
creased severalfold. The average brightness decreased accordingly. This case is obviously 
consistent with the Liouville theorem, since the actual phase volume of the beam was con- 
served. But if the central part of the beam is singled out (blackened in the figure), then 
not only the actual but also the effective phase volume of this part of the beam remains the 
same. 

A different situation occurs if there is mutual scattering of beam particles or oscilla- 
tions develop in the beam, in which case the conditions of the Liouville theorem also cease 
to be satisfied (time-dependent forces develop). In the process of transport, the phase 
volume of the beam begins to inflate, without its shape changing significantly (Fig. ic). 
If the central part of the beam is again singled out, then its phase volume also increases. 

Thus, in the first case the emittance increases because of the poor quality of the ion- 
optical system; it is not fundamental, since one can, in principle, construct anion-optical 
system that will simplify the emittance, converting the beam in Fig. ib back into the 
beam in Fig. la, with the brightness increasing to the initial value. In the second case, 
on the contrary, the increase in emittance determined by the properties of the beam itself 
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will be fundamental, and the beam brightness in Fig. ic cannot be increased by nondissipa- 
tire means. 

As a result of the advent of very bright quasi-point sources, a number of effects have 
been discovered that are typical of bright beams and lead to a fundamental decrease in their 
brightness. Let us consider an EGD ion emitter as an example. The typical radius of its 
emission zone is r 0 ~ 2"10 -7 cm [3] and the ion temperature at the emitter surface is To ~ 
1 eV. The ion beam from an EGD emitter expands rapidly. If we assume that the beam emit- 
tance does not increase, then at a distance r = 20 cm from the emitter the transverse ion 
temperature should decrease to Til = T0(r0/r) 2 (Tii ~ 10 -16 eV) due to expansion of the 
beam. It is obvious that the slightest heating of such a cold beam, due to Coulomb repul- 
sion of the randomly distributed ions, for example, will lead to a sharp increase in emit- 
tance. 

This effect, of which it is convenient to interpret as an increase in the virtual size of 
the source, has been calculated numerically by the Monte-Carlo method in electron and ion 
beams in [4] and [5], respectively, although it is difficult to identify any relationships 
in the results. An attempt to calculate analytically the increase in virtual size (errone- 
ous, in our opinion) was undertaken in [6]. Effects of Coulomb repulsion of charged parti- 
cles have also been considered in [7]. In the present paper we calculate the increase in 
the virtual size of the source due to Coulomb repulsion of randomly distributed, charged 
particles in a beam and compare it with experimental results. We are concerned with ion 
beams below, but all of the arguments can be applied with equal success to electron beams. 

THEORY 

Let us define the virtual size of an emitter. Let the point A (Fig. 2) lie at a large 
distance r from the emitter: r >> a s (a s is the physical size of the emitter; a crossover 
beam can also be treated as an emitter). Ions arriving at this point have an angular spread 
8 << 1 and the virtual Size of the source is a = 8r = rAvi/v (5v i is the maximum spread of 
transverse velocities and v is the total ion velocity). 

If the beam contains no electric fields, then the virtual size of the source does not 
change during free dispersal of the ions (a = const) and Av• decreases with increasing r. 
We now allow for the intrinsic transverse field of the beam, which can be divided arbitrarily 
into two components: the first is determined by the total space charge of the beam (assum- 
ing the charge to be uniformly "smeared out") and causes orderly expansion of the beam with- 
out increasing the emittance (to compensate for this expansion it is sufficient to slightly 
increase the focusing action of the lens); the second is determined by the discreteness of 
the charge of the ions and fluctuates with time, leading to an increase in emittance. 

Designating the transverse fluctuation field as F• we write the variation of virtual 

size, 

r 
da = -- dr• ( 2 )  

U 

where dviy is the change in transverse velocity caused by the fluctuation field, 

e 
d v ~  = ~ f •  ~ ,  ( 3 )  

and e and m are the ion charge and mass (the change in longitudinal velocity caused by the 
fluctuation field FII leads to an increase in the energy spread of the ions [6, 8]). 
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Since the ion energy is mv2/2 = eU (U is the accelerating voltage), from (2) and (3) we 
have 

I73_ 
da  = - ~  r dr .  ( 4 )  

To calculate F I we consider two different cases (Fig. 3a and b). In the beam in Fig. 3a 
the average longitudinal distance between ions, s = ev/J (J is the ion current), is con- 
siderably less than the transverse side of the beam and each ion moves in the environment of 
the cloud of other ions. We call this case the "charged cloud" mode. In the beam in Fig. 
3b, on the contrary, 

Iii >> O ( 5 )  

(D is the beam diameter), and the ions move individually, one after another, in the so-called 
"individual" mode. The values of F• in these two cases will obviously differ considerably. 

To calculate F I in the charged cloud mode, we use the results of [9], in which the 
probability distribution function p(IFl ) has been given for the modulus of the gravitational 
field in a cloud of randomly distributed stars of density n. Since the electrical forces 
also vary as r -2, the results of [9] also apply to a cloud of charged particles: 

p(IFO = H ( ~ ) / F * ,  F *  = 2 a ( 4 / 1 5 ) 2 / % n Z / 3 ,  ~3 ---- [FIIF*, 
o o  

H (t3) = 2 exp - -  x sin x dx. 
0 

For the probability distribution function of the field component Fi, simple calcula- 
tions yield 

H(13• = y H--~) dis ( 3 .  = F_L,'F*). 

The function H($i) was calculated numerically, and its graph is given in Fig. 4. 

In a focused beam the brightness decreases smoothly from the center toward the edges, 
with the current density profile basically coinciding with the function H($1) (Fig. 4). For 
the emitter size we take the diameter at which the current density falls to half of that at 
the center. Since the width of the function H($1) at half-height is about 3, from (4) we 
have 

3 F *  , 
d a  = - fo-  r a r .  ( 6 )  
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For free expansion of a beam with an angular intensity I from a point 
be rewritten as 

source, Eq. (6) can 

da = 3~ \~51 \2u4] rl/--~ (7) 

or 

9~ (mT2~113t 213 ~13x 
a o = l - ~ - - ~ /  kr2 --q ) (8 )  

(r: and r 2 are the distances from the source between which the increase in virtual size 
occurs). 

In integrating Eq. (7) we understand that the density of ions in the beam decreases 
smoothly as it moves, while their relative positions do not change, i.e., mixing of the ions 
does not occur. If the ions do mix, then the force acting on some ion varies randomly in 
magnitude and direction, and Eq. (8) becomes incorrect. Let us consider the main factors 
that can lead to mixing of the ions. 

First, an ion acquires a velocity under the action of the fluctuation field F and starts 
to move relative to the other ions, i.e., the potential energy of interaction of the ions 
is converted into thermal energy of their random motion. The characteristic conversion time 
is �9 ~ ~-: (~ = (4~ne2/m) I/2 is the frequency of Langmuir oscillations (the plasma frequen- 
cy)). Since the beam density is always changing, the phase advance of the plasma oscilla- 
tions is estimated from the equation 

A~p = ~ o) (t) dt. (9)  

As~long as A~ << i, we can assume that the positions of the ions have hardly changed, and 
mixing has not occurred. Mixing begins when A~ ~ i. Calculating the integral (9), we find 

(~):14 j:/2 r~. 
A~o = ~ In r: 

Here a is the aperture angle; r I and r 2 are the distances from the source between which the 
phase advance is calculated. For the electron beam considered below, J = i ~A, U = 20 kV, 

= 3-10 -3 rad, and A~= 0.034 In (r2/r:). Mixing begins at r2/r: = exp(0.034 -I) = 6.1012, 
i.e., the mixing effect due to mutual repulsion can definitely be ignored. Similar results 
are obtained in the other examples that we are considering. 

If two ions turn out to be very close together (at a distance s << n-m/s), however, they 
will be strongly repelled and will separate rapidly, as a result of which the force acting 
on them decreases. The result is that the "tails" of the ion distribution function with re- 
spect to transverse velocities decay considerably faster than for the function H(8 i) [H(81) ~ 
81 -s/2 as 81 + ~]" 

Second, mixing of ions can occur due to their different longitudinal velocities caused 
by the finite energy spread. It is simple to show that for a small velocity difference, the 
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mutual shift As between two ions passing by at a distance r has the form AZ = AW/2W (AW is 
the energy spread). Mixing begins when the mutual shift assumes the same order as the mean 
distance between ions, i.e., 5s ~ n -I/3. Estimates made for different cases show that this 
effect can also be ignored, as a rule. 

And finally, mixing can occur due to nonisotropic expansion of the ion beam. We choose 
a coordinate system moving together with the ion beam, at the center of which lies some 
"test" ion, while the z axis is directed along the beam axis (Fig. 5). If the ion cloud ex- 
pands isotropically, then the velocity of the i-th "field" ion in this coordinate system is 

vi  = AR~,  (i0) 

where A is a constant; R~ is the radius vector of the i-th ion (this situation is similar 
to the expansion of the universe, with A being analogous to the Hubble constant). In such an 
expansion the normalized field ~ at each point does not vary either in magnitude or in direc- 
tion; only the normalization factor F* decreases. The solution (8) was obtained for just 
this case. The beam expands only in the transverse direction, while the distance between 
ions does not change along the z axis. 

We shall assume that the density decreases only due to isotropic expansion (i0), onto 
which is superposed the motion 

u ~  = - - A z ~ ,  uo~ = A p j 2 .  (1l) 
Here z i and Pi are the coordinates of the i-th "field" ion in the cylindrical coordinate 
system, with the constants in (ii) being chosen so that the anisotropic motion does not 
change the average density of the beam. The total velocity of the i-th ion is 

3 
V i =  v~ + u~, V~ = 0, Vo~ = ~ A g ~  , ( 1 2 )  

i.e., the total motion (12) correctly describes expansion of the beam in the moving coordi- 
nate system. 

Let us estimate the rate of change of the transverse electric field Fi at the loca- 
tion of the "test" ion due only to the anisotropic motion (ii) (the vector F• lies in the 
plane perpendicular to the z axis). Since a given Fi field can be produced by different 
configurations of "field" ions, its rate of change f~ = dF~/dt can also be different. We 
shall not seek the probability distribution function p(F~, fl) which determines the proba- 
bility that the field F~ changes at the rate f~ , but shall find the characteristic rate of 

change of the field F,. it is obvious that F~ = e~ p-! 
- ~R~' where p~ is a vector in the plane 

perpendicular to the z axis (see Fig. 5), and the sum is taken over all "field" ions. We 
then have 

{ !  oth_ 3p~ an~\ 
(iB) 

Since we are considering only anisotropic motion (ii), we have 

OPi A ~ (0~ ) 
o"-Y = -~ P~' -bE = uol sin Oi + uz~ cos O, = A ~- s in  O~ - -  z~ cos Oi 

and we can rewrite (13) as 

~ : ( i  Pi 3 Pi 9i 
f• -= eA 2 R~ 2 R~ Ri sin 0i + 3 ~ zl ) R? ~ cos 0i 

o r  

[ l  = eA ~ -~i ~ -- ~ sin~" 8i + 3 cos ~ 0ij. 
(i4) 
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Substituting into (14) the values of sin 2 and cos 2 averaged over the solid angle, we 
have 

Pi A 

Equation (15) does not pretend to be highly accurate, of course, but gives some typical val- 
ue of ['• 

The average lifetime T of an ion configuration with a field strength F• can be estimated 
to be �9 = Fi/f i = 2/A. In this time a "field" ion that had the coordinate Pl moves away to 
a distance 

3 
P~ = Pl + VpT = Pl + y API~" = 4D1, 

i.e., the beam becomes fully mixed, having expanded fourfold. This mixing obviously cannot 

be neglected. 

To allow for the mixing, let us imagine a situation in which the path traveled by the 
beam is divided into segments [rn; rn+l], in each of which the normalized field $i acting 
on the "test" ion is the same, while it changes randomly upon the transition to another sec- 
tion. The increase in virtual size is then 

a= VEa  (16) 

[a n is the increase in virtual size in the n-th section, calculated from Eq. (8)]. 

Let us find the sum (16) for the case in which each segment is ~ times larger than the 
next segment, i.e., Irn - rn+iI/[rn+ I - rn+2[ = $ ($ = 4). We choose the first segment to 

be from rma x to rmax/$, the second from rmax/$ to rmax/~ 2, etc. From (8) and (16) we then 
find 

or 

= - + 

Summing the progression (17), we obtain 

(t-B-=/~) 2 (~-B-~/~)~ ] (17)  
~/3 + (~4/3)2 + . . . .  J 

a / a  o : (1  - -  ~ - ~ / ~ ) / ] / I  - -  g - 4 / 3 .  (18) 

Allowance for the anisotropy of Some values of the function (18) are given in Table i. 
beam expansion thus leads to a slower increase in virtual size, i.e., the result calculated 
from Eq. (8) must be multiplied by the coefficient 0.66. 

Let us now estimate the transverse electric field F i in the "individual" mode: F~(r) 

eO . If we consider two beams with the same angular intensity, but one of which is narrow 

(the individual mode) and the other broad (the charged cloud mode), then the ratio of the 
transverse fluctuation fields in these beams at the same distance r from the emitter is 
Fl(r)/F*(r ) ~ i(r/r*) 7/3. Here r* is the distance at which the narrow beam changes from the 

"individual" mode to the charged cloud mode: r* = s 

Thus, in the "individual" mode, in which the inequality (5) is satisfied, transverse 
fluctuating fields in the beam decrease sharply, which suppresses the increase in the virtual 

size Of the source. 
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TABLE i 

afao ~ a/ao ~ a/a,  

i , i  
2 

0,t8 
0,48 

0,59 65 
0,66 

iO 

0,70. 
0,73 
0,80 

COMPARISON WITH EXPERIMENT 

As follows from (8), the main increase in virtual size occurs not near the source but 
at a large distance from it, i.e., the final virtual size depends essentially on the con- 
struction of the given ion- (or electron-) optical column. Let us consider three examples. 
In [4] the increase in the virtual size of an autoelectron emitter was calculated numerically 
by the Monte-Carlo method and it was measured experimentally. The virtual size of an EGD 
ion emitter was measured in [i0], and a design for an ion-optical column for an ion source 
with field ionization was suggested in [ii, 12]. 

Autoelectron Emitter. A one-lens column with a total length 21.5 cm, magnification M = 
2.5, aperture angle at the target ~ = 3"10 -3 red, and electron energy eU = 20 keV was used 
in [4]. Since the mutual arrangement of electrons in the beam before and after the lens was 
the same, the total virtual size is obtained as the sum of the virtual sizes before and after 
the lens, rather than the square root of the sum of their squares. In Fig. 6 we give data 
from [4] for the beam diameter at the target (points: experiment; solid curve: calculation 
by the Monte-Carlo method) and the results of calculations from Eqs. (8) and (18). Since it 
was not indicated in [4] at what height the beam diameter was measured, the calculations 
were made for the diameter at half-height, a0.5, and for the diameter at i/i0 of the maximum 
height a0.1 (dashed lines 2 and i, respectively). At high currents the calculated results 
agree fairly well with experiment; at low currents the beam diameter is determined by other 
factors (probably by chromatic aberration), and the contribution of the virtual size is neg- 
ligible. 

EGD Ion Source. The virtual size of an EGD source was measured in [i0] in a column 
whose construction was described in [13]. In that column a beam of gallium ions is accel- 
erated to an energy eU = 50 keV and with an angular intensity I = 75 ~A/rad 2 it travels a 
distance r ~ 7.5 cm to the aperture diaphragm. The virtual size increases in this section, 
since after the diaphragm the beam moves in the "individual" mode. The calculated value of 
the virtual size of the source in such a column, a0. 5 = 22 nm, agrees fairly well with the 
experimental value, 40 • 20 nm [i0]. Such calculations were also made in [8]. The bright- 
ness of the EGD source was also measured in [14], but there the brightness was found to be 
an order of magnitude lower than in [i0], probably because of aberration on the grids used 
in [14]. 

Ion Source with Field lonization. The virtual sizes of ion sources with field ioniza- 
tion have not been measured; it is only noted that they should be very small [15]. The con- 
struction of a source with field ionization was described in [ii], and a design of an ion- 
optical column for it was suggested in [12]. To calculate the virtual size of the source 
we used the diagram of the ion-optical column (Fig. 7) copied from [ii, 12]. 

The ion energy in the column is 50 keV, with the beam being accelerated in the first 
20 mm section from the needle i to the accelerating lens 2. The angular intensity in the 
first section is I = 15 ~A/rad2; for the beam current after the aperture diaphragm 3 we took 
two extreme values: Jmin = 2"i0-1~ A and Jmax = 5'10-9 A. For a total source current J0 = 
10 -s A the ions will travel from the needle to the aperture diaphragm in the charged cloud mode. 
After the aperture diaphragm the picture changes. At the crossover, where the beam is narrow, the 
ions travel in the individual mode, and far from the crossover they travel in the charged 
cloud mode. In the sections of 85, 65, and 210 mm up to the second lens 4, I = 840 ~A/rad 2, 
and simple calculations show that at a beam current Jmin the change in mode occurs at a dis- 
tance r* = 320 cm from the crossover, while at Jmax it occurs at r* = 2.6 cm. We can thus 
assume that at Jmin the growth in virtual size occurs only up to the aperture diaphragm, 
while at Jmax it occurs over almost the entire length of the column. Assuming a point source 
and an absence of any aberrations, with allowance for the magnification of the optical system 
it is simple to obtain the size of the focused beam at the target 5: d = 28 nm at Jmin = 
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2.10 -1~ A and d = 96 nm at Jmax = 5"10-9 A, i.e., due only to the increase in the virtual 
size of the source, the current density in the focused beam cannot exceed 32 A/cm 2 in the 
first case and 69 A/cm 2 in the second, instead of the expected value of several hundred am- 
peres per square centimeter [12]. The situation is not as bad as it seems at first glance, 
however. 

First, our calculations may turn out to be inaccurate, since the required parameters of 
the ion-optical column must be determined from the available indirect data on it. Second, 
ways of suppressing the increase in virtual size are seen. For this one must choose a beam 
current such that the ions travel in the individual mode everywhere after the aperture dia- 
phragm, and the aperture diaphragm must be placed closer to the source. To reduce the influ- 
ence of the initial section, in which the charged cloud mode occurs, the magnification of 
the optical system should be as small as possible. 

The effect of the increase in the virtual size of the emitter due to Coulomb repulsion 
between randomly distributed ions thus plays an important role in forming beams from very 
bright quasi-point sources. For autoelectron and EGD emitters the calculated results agree 
well with experiment, while for gas sources with field ionization, a considerable increase 
in virtual size in the process of acceleration and transport is predicted. The situation is 
not catastrophic, however, and with the proper design of ion-optical columns with allowance 
for this effect, the increase in virtual size can be suppressed to a considerable extent. 

The author wishes to thank Professor V. G. Dudnikov for discussions and valuable com- 
ments. 

APPENDIX 

The procedure for measuring virtual size has been described in greatest detail in [i0], 
in which lines at different linear doses were exposed in a resist. The virtual size of the 
source was determined from the ratio of their widths. The probability distribution function 
of the electric field component ~• along the axis perpendicular to the beam and to the scan- 
ning direction (the so-called one-dimensional Holtsmark distribution) isobviously of interest 
in this case. Choosing the z axis to be along this component, we have ~i = ~ cos e. The 
probability of appearance of the field ~• is 

d W  (~• = H (~) d~ 2~ ~ 0 ~o 4~ 

Substituting sin0d0 = d$1/~ and integrating, we obtain 

d~• i lt ~) d~ d W  ( ~ l )  = -~ -  - -  �9 

~• 

The current density distribution in the focal spot is determined by the probability 
distribution function of the field component ~0' lying in the plane perpendicular to the beam 
axis (the so-called two-dimensional Holtsmark distribution). Choosing the z axis to be along 
the beam, we have ~p = ~ sin 0. The probability of appearance of the field ~p is 

148 



( ~  d~ 2n sin 0 dO 
d W ( ~ o ) = H ' e ' - ~  Un " 

Substituting dO = dSp/(B cos O) and integrating, we find 

% 
i [ H (~) d~ 

~o 

The p coordinate of an ion in the plane of the spot is proportional to ~p, and the current 
density distribution is j($p) ~ dW(~0)/(2~$pd~p). 

The function H($ i) has a full width at half-height of just under 3, and j(~p} is about 
2.8. Either of them can therefore be used to calculate the virtual size a0. s. These func- 
tions have considerably different asymptotic behavior, however. Since the three-dimensional 
Holtsmark distribution is H(~) ~ $-572 for large ~ (this is easy to show, assuming that the 
high field strengths are produced by one nearby ion), we have H(~i) ~ B• -5/2 and j(~p) ~;! 
B~-712 . 

Tables and graphs of one-, two-, and three-dimensional Holtsmark distributions can be 
found in [16], where more convenient equations for calculating those functions are also 
given. 

LITERATURE CITED 

i. G. I. Budker and A. N. Skrinskii, "Electronic cooling and new possibilities in the 
physics of elementary lparticles," Usp. Fiz. Nauk, 124, No. 4 (1978). 

2. S. van der Meer, "Stochastic cooling and storage of antiprotons," Usp. Fiz. N auk, 147, 
No. 2 (1985). 

3. A. L. Shabalin, "Size of the emission zone of an electrohydrodynamic ion emitter," 
Dokl. Akad. Nauk SSSR, 303, No. 2 (1988). 

4. T. Groves, D. L. Hammond, and H. Kuo, "Electron-beam broadening effects caused by dis- 
creteness of space charge," J. Vac. Sci. Technol., 16, No. 6 (1979). 

5. J. W. Ward, "A Monte-Carlo calculation of the virtual source size for an LMIS," J. Vac. 
Sci. Technol., B3, No. 1 (1985). 

6. W. Knauer, "Energy broadening in field emitted electron and ion beams," Optik, 56, No. 
4 (1981). 

7. G. H. Jansen, "Coulomb interaction in particle beams," Nucl. Instrum. Methods, A298, 
Nos. 1-3 (1990). 

8. V. G. Dudnikov and A. L. Shabalin, "Evolution of the momentum distribution of ions in 
electrohydrodynamic ion emitters," Zh. Tekh. Fiz., 60, No. 4 (1990). 

9. S. Chandrasekhar, Rev. Mod. Phys., 15, No. 1 (1943). 
i0. M. Kamuro, T. Kanayama, H. Hiroshima~ and H. Tanoue, "Measurement of virtual crossover 

in liquid gallium ion sources," Appl. Phys. Lett., 42, No. i0 (1983). 
Ii. G. N. Lewis, H. Paik, J. Mioduszewski, and B. M. Siegel, "A hydrogen field ion source 

with focusing optics," J. Vac. Sci. Technol., B4, No. 1 (1986). 
12. G. N. Lewis, J. Mioduszewski, D. Weiner, and B. M. Siegel, "An ion beam lithography 

system for nanolithography with a focused H2 + ion probe," J. Vac. Sci. Technol., B6, 
No. 1 (1988). 

13. M. Kamuro, "Ion beam exposure apparatus using a liquid metal source," Thin Solid Films, 
92, Nos. I-2 (1982). 

14. G. D. Alton and P. M. Read, "Emittance measurements of gallium liquid-metal ion sources, 
Nucl. Instrum. Methods, B54, Nos. 1-3 (1991). 

15. R. J. Blackwell, J. A. Kubby, G. N. Lewis, and B. M. Siegel, "Experimental focused ion 
beam system using a gaseous field ion source," J. Vac. Sci. Technol., B3, No. 1 (1985). 

16. J. W. Ward, R. L. Kubena, and M. W. Utlaut, "Transverse thermal velocity broadening of 
focused beams from liquid ion sources," J. Vac. Sci. Teehnol., B6, No. 6 (1988). 

149 


